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The emergence of convolutional neural networks (CNN) in various fields has 
also paved numerous ways for advancement in the field of medical imaging. 
This paper focuses on functional magnetic resonance imaging (fMRI) in the 
field of neuroimaging. It has high temporal resolution and robust to control 
or non-control subjects. CNN analysis on structural magnetic resonance 
imaging (MRI) and fMRI datasets is compared to rule out one of the grey 
areas in building CNNs for medical imaging analysis. This study focuses on 
the feature map size selection on fMRI datasets with CNNs where the 
selected sizes are evaluated for their performances. Although few 
outstanding studies on fMRI have been published, the availability of diverse 
previous studies on MRI previous works impulses us to study to learn the 
pattern of feature map sizes for CNN configuration. Six configurations are 
analyzed with prominent public fMRI dataset, names as Human Connectome 
Project (HCP). This dataset is widely used for any type of fMRI classification. 
With three set of data divisions, the accuracy values for validation set of fMRI 
classification are assessed and discussed. Despite the fact that only one slice 
of every 118 subjects' temporal brain images is used in the study, the 
validation of classification for three training-excluded subjects known as 
validation set, has proven the need for feature map size selection. This paper 
emphasizes the indispensable step of selecting the feature map sizes when 
designing CNN for fMRI classification. In addition, we provide proofs that 
validation set should consist of distinct subjects for definite evaluation of any 
model performance. 
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1. Introduction  

*Convolutional neural network (CNN) is one of the 
deep learning branches (Guo et al., 2016). Deep 
learning continues to be fundamental of many 
remarkable researches for mimicking human’s 
intelligence known as artificial intelligence 
(Gollapudi, 2016). The enhancement over artificial 
neural network (ANN), which once became an 
important tool around 30 years ago, CNN has given 
platforms for many contributions in many fields 
including medical imaging field (LeCun et al., 2015; 
Greenspan et al., 2016). Various implementation of 
convolutional layers had been applied successfully 
such as Facebook language translation (Gehring et 
al., 2017), image captioning (Karpathy and Fei-Fei, 
2015) and pneumonia detection that exceeds 
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expertise' level (Rajpurkar et al., 2017). Despite their 
dominance, they are entailed to a high computational 
cost partially due to the convolution layers 
implementation. 

Deep CNN is the backbone of many achievements. 
The word `deep' is referred to a much higher number 
of layers that CNN incorporates compared to ANN. 
For instance, a network is known as shallow network 
when five or fewer layers are constructed. A deep 
network, on the other hand, could have six and more 
layers. Rajpurkar et al. (2017) demonstrated on 
recently published project of detecting diseases 
using CNN, which 121 layers was used in their 
model. CNN groundwork and modification are 
bounded by many decisive factors, one of it being the 
count of layer. However, the layer count is only one 
of handful other concerns in building CNN due to 
computational cost entitlement. 

Difference in image domains is one of the main 
challenges in this study. This leads to lack of feature 
map size explanation in many related studies. In the 
neuroimaging field, functional magnetic resonance 
imaging known as fMRI, is three-dimensional images 
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with high temporal resolution. It is robust to either 
control or non-control subjects. Greenspan et al. 
(2016) raised an issue regarding this data images. 
Most works to date are two-dimensional images 
analysis performance of publicly available ground-
truth data. The ground-truth annotation by experts 
is scarce for neuroimaging, especially functional MRI 
dataset. Towards producing `off-the-shelf' automatic 
disease diagnosis system, many publications, such as 
Huang et al. (2017) and Makkie et al. (2017) had 
addressed the need of ground-truth data. 

Collecting fMRI data is known to be expensive in 
both cost- and time-wise. The cost of computation is 
increasing with the size of the data. Shortfall of 
expert annotations such as physician and neurologist 
diagnosis of each fMRI image set has doubled the 
challenge in classifying fMRI either on cost- or time-
wise. Most relevant prior works on fMRI are focused 
on reducing the dimension with principal 
component analysis (PCA), decomposing voxels with 
independent component analysis (ICA), and 
analysing empirically by-subject using statistical 
parametric mapping (SPM). Mentioned challenges 
are countered in many of these methods by reducing 
the dimensions and producing own dataset including 
ground-truth data. 

The one-task label is proposed in this paper for 
replacing the unavailable ground-truth data and 
simultaneously reducing the computation cost. The 
computational cost is reduced by limiting the 
dimension of the brain image slices. In this paper, we 
provide an in-depth investigation into feature map 
size selection for fMRI classification where an end-
to-end deep CNN (also known as ConvNet) approach 
is investigated in this paper 

The remainder of this paper is organized as 
follows: the CNN related work on MRI and fMRI is 
tabulated and discussed. From that, the scope and 
approach of this paper are explained. Analysis and 
discussion on the proposed approach is followed. 
Then, the conclusion and recommended future 
works are mentioned. 

2. Related works 

This section details about existing approaches 
relating to classification of fMRI. 

As noted by Greenspan et al. (2016), the number 
of publications devoted to medical imaging analysis 
has increased tremendously. The fMRI technology 
has arrived more than two decades ago (Kwong et 
al., 1992; Cohen et al., 2017). In which invites rapid 
growth on literature of understanding the human's 
brain. This major advance, on the other hand, has led 
us to various challenges in fMRI classification such as 
inter- and intra-subject signal variability, lengthy 
preprocessing due to noisy images and very high-
dimensional images with low resolution. Significant 
CNN-based approach in MRI analysis researches is 
investigated comprehensively. With similar intrinsic 
variability of brain anatomy, we focus on studying 
the MRI analysis with CNN to interpret and 
incorporate the founding into fMRI studies.  

Data treatment and data application are some of 
the contrasting elements between MRI and fMRI. For 
instance, during data preparation, augmenting the 
data is encouraged for MRI machine learning pre-
processing step (Pereira et al., 2016; Valverde et al., 
2017). This step is proposed either to increase the 
size of training data or to improve the overall 
accuracy. On the contrary, the augmentation used on 
the fMRI data will be ineffective (Valente et al., 2014) 
due to the brain anatomical maps nature. 

In addition, MRI is commonly commercialized for 
medical diagnosis to certain parts of human bodies 
including the brain itself. fMRI applications, on the 
other hand, are applicable in areas such as diseases 
diagnosing, pre-surgical mapping and treating 
disorders that relate only to the brain maps. 
However, fMRI is not on the par as MRI 
commercialization as of date. The needs of well-
versed radiologist and physician are pivotal in most 
of the fMRI services. For instance, HUSM, being one 
of the advanced hospital universities in Malaysia 
with owns dedicated department of Neuroscience 
has yet to have real services for fMRI. 

Despite the differences, both technologies are 
quite similar in the classification methods and 
performance evaluation. The MRI of the brain has 
similar features to fMRI where both have same brain 
shapes or maps. Though the spatial resolution is very 
high compared to fMRI resolution, plenty of 
approaches had resolution down sampled (Li et al., 
2014), reduced by-patch the MRI data (Kamnitsas et 
al., 2017) and used only region of interest (Zhao et 
al., 2017) during the pre-processing step. High 
spatial resolution is hugely important for physicians 
to diagnose the MRI but not equally important for 
some of computing approaches. 

Furthermore, our proposed approach, the 
convolutional neural network, CNN has been applied 
in both domains. As shown in Table 1 and Table 2, 
significant efforts have been made to develop an 
effective MRI and fMRI analysis using CNN. Distinct 
implementation of CNN in each of the approach 
suggests there are many concerns in building CNN. 
The test data division, convolutional layer counts 
and feature map sizes selection are few grey areas in 
evaluating the CNN performance. These points will 
be addressed briefly in the next section. 

Using 830 subjects MRI with two convolutional 
layers is one of the earliest CNN developments in 
neuroimaging (Li et al., 2014). The used of small 3D 
data patches as the input may have contributed to 
low sensitivity of the approach. With the 
advancement of technology of faster and bigger 
computation, this approach could be improved with 
rather higher than 10 epochs. The same feature map 
size is used in their approach for all its convolutional 
layers. Relatively, as described in the Table 1, 
sensitivity of CNN approach has increased in recent 
research publications such as illustrated by Pereira 
et al. (2016) and Havaei et al. (2017). Additionally, 
CNN is applied on other body parts of MRI too. The 
approach by Margeta et al. (2017) on cardiac MRI 
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classification shows very high sensitivity for its five 
convolutional layers. 

Although the improvement is seen in progress 
throughout the years, the grey areas such as the 
feature map sizes and layer counts selection are 
mentioned vaguely. For instance, few papers stated 

the sources of selecting their feature maps size. 
Sarraf and Tofighi (2016) adopted the GoogleNet and 
LeNet models for their feature map sizes. While 
Havaei et al. (2017), Cui et al. (2016), Burgh et al. 
(2017) and Zafar et al. (2017) do not present their 
procedure on selection of feature map size. 

 
Table 1: Overview of papers employing CNN techniques for MRI analysis 

Reference Application; remarks Feature map sizes Sensitivity (average) Accuracy 
(Havaei et al., 

2017) 
Brain tumor; 2-phases CNN, 3 convolutional layers, 5 

classes, 30 times faster computation 
random sizes 0.84 - 

(Pereira et al., 
2016) 

Brain tumor; using 3D MRI, 2 types of CNN constructions, 4 
and 6 convolution layers, very small learning rate: 3 × 10−7 

twice increase of feature maps 
sizes for every 2 or 3 layers 

0.86 - 

(Zhao and Jia, 
2016) 

Brain tumor; automatic feature maps selection, using 2D 
slices, 3-cascaded CNN layers with 2 to 5 convolutional 

layers, random selection for test data 
- - 81.0% 

(Li et al., 
2014) 

AD; 830 subjects, using 3D MRI patches (15 × 15 × 15), 10 
epochs, learning rate is fixed to 10−2, random selection for 

test data 
same 0.77 - 

(Cui et al., 
2016) 

Bipolar disorder; 32 × 32 and 13 × 13 MRI patches, 4 
convolutional layers, random selection for test data 

random sizes - 90.8% 

(Burgh et al., 
2017) 

ALS; 3 types of input, 4 convolutional layers, independent 
evaluation set 

random sizes -- 84.4% 

(Margeta et 
al., 2017) 

Cardiac MRI; the input is pre-classified patches using 
classification forest, 5 convolution layers and decrease-by-

half 
decrease-by-half 0.98 - 

 
Table 2: Overview of research papers employing CNN techniques for fMRI analysis 

Reference Application; remarks Feature map sizes Sensitivity (average) Accuracy 

(Zafar et al., 
2017) 

task-fMRI; 16 subjects, MNI template is used for 
normalization, ROI, not and end-to-end CNN approach, 2 

convolutional layers 
random sizes - 68.6% 

(Zhao et al., 
2017) 

3D rest-fMRI and task-fMRI; Using many steps of pre-
processing, ROI is used, 2 convolutional layers, 20% random 

selection for test data 
decrease-by-half - 94.6% 

(Sarraf and 
Tofighi, 2016) 

Decomposed 2D AD rest-fMRI and MRI; end-to-end pipeline, 
base learning rate of 0.01, 25% random selection for test data 

Adopted from 
GoogleNet and 
LeNet models 

~1 98.8% 

 

Nonetheless, Sarraf and Tofighi (2016) is the best 
in term of accuracy and sensitivity. They adopted the 
successful models for image recognition using 2 and 
22 convolutional layers respectively LeCun et al. 
(1998) and Szegedy et al. (2014). Selected feature 
map sizes are adopted from both methods. However, 
MRI and fMRI data are both used for the 
classification purpose, where four set of MRI images 
were used to train the CNN. This step is hardly 
complied in most fMRI classification cases because 
MRI is not a by-product of any fMRI data acquisition. 
It is highly depending on the experimental setup 
during data acquisition. 

In this paper, we present an end-to-end CNN 
pipeline for fMRI classification. With different 
configurations, we show the need of feature map 
sizes selection process to ensure the credibility of 
the founding. Although similar approach may have 
contributed to the state-of-art technique, lacking 
grey areas elaboration stain the founding. Thus, we 
are introducing our approach of handling this 
problem. 

3. Approach 

We present the strategy to select best feature 
map size of CNN fMRI. Based on previous work, six 
configurations of CNN are used to study the effect of 
selection to delineate the grey areas in neuroimaging 

with deep learning perspective. The data used in this 
study is Human Connectome Project dataset (Van 
Essen et al., 2012). The dataset is readily available to 
download and used for research purpose. With the 
objective of getting concrete finding, synthetic data 
is not employed in this research. Proposed approach 
is shown in Fig. 1. The approach is explained in this 
section. 

3.1. Data preparation 

Generally, several steps of data preprocessing are 
considered in most of fMRI classification approaches. 
Brain extraction, slice timing correction, smoothing, 
normalization, realignment, motion correction and 
co-registration are some of the major steps that were 
applied on single subject or group analysis of fMRI 
data. These steps are very important to reduce 
noises and simultaneously prepare the data for 
model employment (Poldrack et al., 2011). Software 
packages such as SPM, FSL and AFNI are used 
interchangeably and side-by-side for pre-processing 
pipeline. However, as discussed in Eklund et al. 
(2016), proposed parametric cluster-wise inference 
to the group-analysis data by these software could 
inflate false positive risk during classification. 

One-step of preprocessing is employed in our 
data group analysis to avert the problems associated 
with parametric statistical modelling. Normalization 
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is deployed that outputs pre-processed zero mean 
and unit variance fMRI data. This one preprocessing 
step is considered in light of CNN advantages and 
capabilities. This deep learning approach has shown 
the capability of recognizing various illuminated, 
deformed and occluded objects in their object 

recognition and localization machine learning 
(Bengio, 2013). An intuition behind this is to avoid 
the smallest changes to the brain images before 
classification process. Hence the minimal 
preprocessing approach is taken. 

 
 

 

 
Fig. 1: Proposed architecture block diagram. The three set of data are used to validate the architecture by observing the 

validation loss 
 

We are using a total of 121 subjects of task-fMRI 
from HCP. There are more than 1400 data subjects 
available in the respective server. For this study, to 
reduce computation cost, small portion of the data 
are used. To reduce overfitting chances, the 36th of 
axial slice had been selected which corresponds to 
the center of the brain horizontally. 37382 samples 
are acquired when emotion and motor task were 
chosen for this study. Though it seems too small for 
classification process, the samples are quite identical 
because it was taken from the same part for each 
brain and hardly classified even with human eyes. 
Data augmentation strategy is not deployed in this 
work. Uniform sampling is applied to both classes 
due to imbalances in class size. 

Three different divisions of data are used in both 
classification parts as shown in Fig. 2. The 121 
subjects are divided into two parts, 118 subjects’ and 
3 subjects’ parts. This separation is intended to 
differentiate the training and testing set from 
validation or evaluation set. The 3-subject data is 
known as validation set. The remaining 118 data 
subjects are randomized separately and divided into 

training and testing part using Scikit-learn 
(Pedregosa et al., 2011). 

3.2. End-to-end CNN approach 

We propose an end-to-end CNN learning 
approach. With the purpose to lay a foundation for 
basis feature map size selection, we have considered 
vanilla convolutional neural network 
implementation. A different approach of selection 
might be encountered for hybrid CNN such as 
recurrent CNN (R-CNN) and CNN with Long-Short-
Term Memory (CNN-LSTM). Nonetheless, this paper 
is aimed to produce a simple rule of thumb for sizing 
the feature maps for any convolutional architecture 
of neural network. 

Conventional neural networks consist of three 
main types of layers: input, hidden and output layer. 
Similarly, these layers are also present in CNN. 
Besides, there are many sub-types of layers in the 
convolutional neural network architecture such as 
dropout, max-pooling and fully-connected layers. 
The most significant type of layers of CNN is the 
convolutional layer where it differentiates the 
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ordinary artificial neural network to the deep 
learning branches. This is the layer that which 
feature map sizes are considered where it is placed 

at the hidden layer. The main advantages of this 
layer are weight sharing initiators and feature 
location insensitive part. 

 

 
Fig. 2: Data division of 121 HCP subjects 

 

The weight sharing is realized when the previous 
layer (m − 1) of the network is convolved with 
kernels and produces the next layer (m) with spatial 
features. Every convolutional layer has its own set of 
kernels (later known as weights). It is randomized 
with default parameter in the first stage, where there 
later evaluated by the loss function in the 
backpropagation stage. This forward (convolution 
processes) and backward (backpropagation with 
loss function) stages output the updated weights. Set 
of weights are updated in every iteration that satisfy 
the optimization equation. 

In traditional neural network, weight sharing is 
employed for very small degree of potential. No 
spatial relation exists between each layer. This is 
because there is no sub-regions convolution with the 
weights of each input image. In other words, 
traditional neural network is updating the weights 
based on wide space of input image or hand-crafted 
weights. On the other hand, convolutions induce the 
low-level abstraction in the early part of the network 
and weights is shared to make up the higher or 
feature-level abstraction towards the end of the 
network. Furthermore, more than one feature map 
for each layer level is recommended to increase and 
multiply the feature-worth of weights that shared 
throughout the network. This will be discussed in 
the next section. 

The input and output layer are the normalized 
fMRI and the classification labels respectively. The 
convolutional layer where the normalized fMRI is fed 
is the first hidden layer. The input layer remains the 
same for all the six configurations introduced in this 
paper. Maxpooling and dropout layers are connected 
among the convolutional layers. In our design 
experiment, each layer is stacked four times before 
the fully-connected (FC) layer. Classification layer is 
connected at the end of FC layer where the accuracy 
for each epoch is calculated.  

Keras that wraps the Tensorflow is used in this 
study. Keras has been shown to be easier for those 
who are new to deep learning. We deployed this 
wrapper to get a reproducible output for other 
researchers. The end-to-end CNN is employed with 
Keras default hyper-parameters. 

3.3. CNN configurations 

As shown in Fig. 3, two types of CNN structure are 
chosen for this study; 1-step and 2-step convolution. 
With 1-step convolution, each layer has only one 
convolution input process, either the fMRI input 
images (as shown in the Fig. 3) or maxpooled 
images, where the resulted feature maps will be fed 
into the maxpooling layer. For the 2-step 
convolution, two consecutive convolution processes 
had been employed to convolve the products of first 
convolution process, where only feature maps are 
convolved. The stacked convolutional layers will 
extract more abstract feature maps compared to 1-
step convolution structure (Pereira et al., 2016). As a 
result, edges and features are sharpening. One of the 
hypothesis of this research is the 2-step will produce 
better accuracies compared to 1-step. 

The 3-by-3 kernel are slide (the convolution 
process) over the image to get the first feature map 
as depicted in Fig. 3. With the size of 45, there will be 
45 set of kernels for each layer to produce distinct 
45 feature maps. Three sets of each structure with 
45, 90 and 180 feature maps make up for six 
configurations of CNN as listed in Table 3. However, 
similar length of structures is chosen for each 
configuration. For instance, when the 1-step 
convolution is employed, 4 sets of 45 kernels will be 
updated for every iteration of size 45 feature maps 
configuration. While for 2-step convolution 
structure, the kernel number is doubled to 8 sets. 
Thus, sharper edges come with higher number of 
parameters and longer computations. 
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Fig. 3: Figures show different 1-step and 2-step convolution structures of the first convolution layer 

 
Table 3: The convolutional neural network configurations; 45, 90 and 180 are sizes of the feature map products of the 

convolutions layers while Mp, Do, and F is the maxpooling, dropout and fully-connected layer respectively. The 'Softmax (2)' 
is the classification and the last layer of these CNN configurations 

Name Feature maps 
CNN 1 45-Mp-Do-45-Mp-Do-45-Mp-45-Mp-F-Softmax (2) 
CNN 2 45-45-Mp-Do-45-45-Mp-Do-45-45-Mp-45-45-mp-F-Softmax (2) 
CNN 3 90-Mp-Do-90-Mp-Do-90-Mp-90-Mp-F-Softmax (2) 
CNN 4 90-90-Mp-Do-90-90-Mp-Do-90-90-Mp-90-90-mp-F-Softmax (2) 
CNN 5 180-Mp-Do-180--Mp-Do-180-Mp-180-Mp-F-Softmax (2) 
CNN 6 180-180-Mp-Do-180-180-Mp-Do-180-180-Mp-180-180-Mp-F-Softmax (2) 

 

Selection of hyper-parameters is critical for this 
study in order to reduce chances of overfitting and to 
reduce the computation cost due to immense volume 
of data. In general, the hyper-parameters are chosen 
based on previous studies except for learning rate. 
Learning rate is chosen to be very small particularly 
for fMRI classification. With value of 0.00001, the 
learning sequence of 1-slice of fMRI is expected to 
progress slowly. This is because we aimed at a 
reliable classification of high SNR fMRI images and 
by making CNN less prone to fast convergence. 

3.4. Feature map selection 

The main aspect of this paper is discussed in this 
section. 

Each value in feature map is a product of 3-by-3 
kernel and 3-by-3 input square convolution as 
referred to Fig. 3. For example, a narrow 90-by-104 
input convolution produces 88-by-102 of each 
feature map. On the other hand, the wide 88-by-102 
input image convolution outputs the same size 
feature map. The calculation is increased with the 
increasing of the feature map size. 

Then, the feature maps are either convolved or 
maxpooled according to its structure. However, each 
convolution must pass an activation function. 
Rectified linear unit or ReLU is the convolutional 
layer activation function. This function is a non-

linearity term to differentiate the features in each 
feature map. It is a straightforward function; ReLU = 
max(x, 0) where the x is the convolved output of 
every convolutional layer. As compared to sigmoid 

function; 1/(1 + exp{−x}}) and tanh 
function;  2σ(2x) − 1, this activation has been found 
to accelerate gradient descent convergence 
(Krizhevsky et al., 2012). 

The chosen 45, 90 and 180 sizes of the feature 
map are due to the length of the input fMRI images. 
The high temporal resolution input images are 90-
by-104 in length. Half-length, same-length and 
double-length of feature map size are chosen based 
on many studies such as Simonyan and Zisserman 
(2014) and Margeta et al. (2017). The studies have 
shown very remarkable results in image recognition 
and localization. 

In combating high computational cost, narrow 
convolution with no padding is implemented in the 
first hidden layer of CNN. The intuition is to reduce 
cost consumption due to computations because fMRI 
images contain black background at their borders. 
While for other convolution layers, same size zero-
padding or known as wide convolution is used. With 
stride of one, every region in the input images is 
convolved. The product of convolution (Raschka, 
2015) which also known as the features map has the 
weight sharing property due to the repeated 
convolution process. 
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4. Results and discussion 

Results are described and discussed in this 
section. As show in Fig. 4, the training time is directly 
proportional to parameter count. These parameters 
are counted for various processes such as 
convolution, maxpooling and classification 
calculations. The higher the sizes of the feature map, 
the more the parameters to be calculated. For 
instance, the smaller size of kernel (3-by-3) had 
implied significantly reduced parameters. However, 
parameters in 2-step convolution are expected to be 
much higher than that of 1-step convolution. 

 

 
Fig. 4: Training time versus parameter counts graph using 

Nvidia GTX1080 with Intel Xeon @3.60Hz 
 

In this research experiment, both training and 
testing are set to 200 epochs for each running. Each 
epoch of training has increased the accuracy and 
lowered the loss consequently. The optimization 
process computes the best set of weights for each 
training step. The CNN 1 with 1-step convolution and 
half-length size of the input image has the slowest 
training propagation and highest training and testing 
loss (error) as shown in Fig. 5. While CNN 6 with 
twice size of image length and 2-step convolution 
has the fastest training convergence. 

However, the rate of training step does not yield a 
good accuracy. In Table 4, the training and testing 
accuracy values are above 90% for each 
configuration. Though it seems that all the 
configurations had performed their best, evaluating 
the configurations will validate each of configuration 
performances. As shown in the Table 4, the values of 
validation accuracy vary from 73.96% to 99.72% as 
the highest accuracy. Thus, the CNN 4 has performed 
the best for the selected feature map according to 
this data. 

Selecting the size of feature map for each 
configuration is importance because there are many 
factors involved, such as the uncountable shapes of 
human’s anatomical map. MNIST and CIFAR-10 with 
state-of-the-art CNN approaches are getting better 
recognizing each image. This is because each CNN 
approach is required to recognize the shape of each 
object. On the other hand, for classifying fMRI 
classes, the CNN is expected to ditch and insensitive 
to the shape of the brain but rather sensitive to what 

is inside it. The shapes of the brain are the noises 
that CNN should not recognize. With very low 
training rate, the approach is expected to reduce the 
effect of the noises and susceptible to overfitting. 

 
Table 4: Accuracy values (%) on visual cognition versus 

Motor sensory task-fMRI of end-to-end-CNN classification 
for different configuration result 

Name 
Training Accuracy/ testing 

Accuracy 
Validation 
Accuracy 

CNN 1 90.56 / 95.91 83.14 
CNN 2 99.04 / 100.0 73.96 
CNN 3 98.98 / 99.98 74.81 
CNN 4 99.52 / 100.0 99.72 
CNN 5 99.85 / 100.0 98.01 
CNN 6 99.78 / 100.0 83.33 

 
The initial value of 0.693 is expected as the first 

epoch of each loss calculation. Using the softmax for 
loss calculation, the loss is the negative log 
probability of the correct class. The two classes' 
classification which 0.5 probability of each, thus 
−ln(0.5) is equals to 0.693.  

In a nutshell, the CNN 4 shows the best 
configuration for this dataset and set of hyper-
parameters. With 99.52% accuracy value, the 2-step 
convolution and same length image size of feature 
map size, the configuration is found to be the optimal 
configuration that discards the overfitting and fast 
convergence during training.  

In addition, the training and testing accuracy 
values show that the 2-step convolution works 
better at recognizing the classes. 

5. Conclusion 

We have presented the effect of feature map size 
on the fMRI dataset classification with end-to-end 
deep convolutional neural network. The size plays an 
important role in selecting other hyper-parameters 
for CNN configuration and training. This is due to 
high computation cost of convolution process with 
bigger feature map sizes. With the same size of fMRI 
length of the input image with 2-step convolution, 
the size of that feature map shows promising result. 

The right size of feature map is equally important 
as other choice of hyper-parameters such as training 
rate and depth of the convolution. Deeper than 2-
step convolution has a trade-off between accuracy 
value and computational cost. One can afford to have 
high cost in computation to get better accuracy 
because of powerful graphic cards or GPU that could 
be stacked together. 

Training CNN to classify fMRI is different to 
training MRI. And, to compare other domain such as 
handwritten dataset, speech data and other image 
dataset that are easily available in the net, fMRI has 
more challenge due to its 3D time-series nature. The 
differences are visualized in the training session and 
for choosing the best hyper-parameters. Without any 
confirmation that each training progress will over fit 
the classification approach. As such, in this paper, it 
is shown that a very high training accuracy does not 
produce a good classification. 
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This paper also focuses on the importance of 
using validation set for evaluating the CNN model. 
The shapes of the brains could be the high-level 

feature that the CNN opt to recognize and be 
sensitive of. The validation set increases the 
confidence level of each CNN setup. 

 

  

  
Fig. 5: Testing and training plots for different CNN configurations 

 

Our approach has been tested on one slice of fMRI 
images which is the most center part of the brain. 
For other slices of the brain, the approach needs 
more than 118 subjects to test each CNN 
configurations. However, this research demonstrates 
that CNN is capable of recognizing feature inside 
brain maps to classify motor and emotion tasks.  

It is recommended for future work to study the 
effect of higher dimension of fMRI images for 
classification. The two-dimensional convolution 
could be expanded to 3D convolution, while 
maintaining the approach of using separated 
subjects instead of separated randomized dataset. 
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